Development And Application Of Biomimetic Electrospun Nanofibers In Total Joint Replacement

نویسنده

  • Wei Song
چکیده

DEVELOPMENT AND APPLICATION OF BIOMIMETIC ELECTROSPUN NANOFIBERS INTOTAL JOINT REPLACEMENTbyWEI SONGMay 2014Advisor: Dr. Weiping RenMajor: Biomedical EngineeringDegree: Doctor of Philosophy Failure of osseointegration (direct anchorage of an implant by bone formation at the bone‐implant surface) and implant infection (such as that caused by Staphylococcus aureus, S. aureus) are the two main causes of implant failure and loosening. There is a critical need for orthopedic implants that promote rapid osseointegration and prevent bacterial colonization, particularly when placed in bone compromised by disease or physiology of the patients. A better understanding of the key factors that influence cell fate decisions at the bone‐implant interface is required. Our study is to develop a class of “bone‐like” nanofibers (NFs) that promote osseointegration while preventing bacterial colonization and subsequent infections. This research goal is supported by our preliminary data on the preparation of coaxial electrospun NFs composed of polycaprolactone (PCL) and polyvinyl alcohol (PVA) polymers arranged in a core‐sheath shape. The PCL/PVA NFs are biocompatible and biodegradable with appropriate fiber diameter, pore size and mechanical strength, leading to enhanced cell adhesion, proliferation and differentiation of osteoblast precursor cells. The objective is to

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Electrospun polyvinyl alcohol-collagen-hydroxyapatite nanofibers: a biomimetic extracellular matrix for osteoblastic cells.

The failure of prosthesis after total joint replacement is due to the lack of early implant osseointegration. In this study polyvinyl alcohol-collagen-hydroxyapatite (PVA-Col-HA) electrospun nanofibrous meshes were fabricated as a biomimetic bone-like extracellular matrix for the modification of orthopedic prosthetic surfaces. In order to reinforce the PVA nanofibers, HA nanorods and Type I col...

متن کامل

Biomimetic and bioactive nanofibrous scaffolds from electrospun composite nanofibers

Electrospinning is an enabling technology that can architecturally (in terms of geometry, morphology or topography) and biochemically fabricate engineered cellular scaffolds that mimic the native extracellular matrix (ECM). This is especially important and forms one of the essential paradigms in the area of tissue engineering. While biomimesis of the physical dimensions of native ECM's major co...

متن کامل

Biomimetic electrospun nanofibrous structures for tissue engineering.

Biomimetic nanofibrous scaffolds mimicking important features of the native extracellular matrix provide a promising strategy to restore functions or achieve favorable responses for tissue regeneration. This review provides a brief overview of current state-of-the-art research designing and using biomimetic electrospun nanofibers as scaffolds for tissue engineering. It begins with a brief intro...

متن کامل

Electrospun Nanofibers and their Application in Tissue Repair and Engineering

Introduction: Tissue engineering is the repair and replacement of damaged tissues and requires a combination of cells, growth factor and porous scaffolds. Scaffolds, as one of the main components in tissue engineering, are used as a template for tissue regeneration and induction and guidance of growth of the new and biologically active tissues. An ideal scaffold in tissue engineering, imitating...

متن کامل

Application of Image Analysis in the Characterization of Electrospun Nanofibers

In this work, CoFe2O4 nanoparticles have been prepared by co-precipitation technique. The synthesized CoFe2O4 nanoparticles were applied in the preparation of CoFe2O4/Polyacrylonitrile fiber nanocomposites by the electrospinning process. The prepared nanoparticles and nanofibers were characterized using the Scanning Electron ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2014